ENV is an open source Python library for developing and comparing reinforcement learning algorithms by providing a standard API to communicate between learning algorithms and environments, as well as a standard set of environments compliant with that API
We are support Python 3.7, 3.8, 3.9, 3.10 on Linux and Windows To install the base ENV library, use:
Update later
git clone https://github.com/ngoxuanphong/ENV.git
cd ENV
pip install -r requirements.txt
from setup import make
from numba import njit
import numpy as np
@njit()
def Agent(state, agent_data):
validActions = env.getValidActions(state)
actions = np.where(validActions==1)[0]
action = np.random.choice(actions)
return action, agent_data
env = make('SushiGo')
env.numba_main_2(Agent, 1000, [0], 0)
# count_win, agent_data = env.numba_main_2(Agent, count_game_train, agent_data, level)
Please refer to Wiki for complete usage details
ENV includes 20 games:
Game | Win lv0 | win lv1 | win lv1 | Time lv0 | Time lv1 | Time lv1 |
---|---|---|---|---|---|---|
Catan | 2535 | 211 | 13 | 307 | 224 | 324 |
CatanNoExchange | 2464 | 339 | False | 190 | 673 | False |
Century | 1932 | 12 | 1 | 48 | 51 | 52 |
Durak | 2561 | 447 | False | 15 | 18 | False |
Exploding_Kitten | 2002 | 1631 | False | 18 | 16 | False |
Fantan | 2413 | 117 | False | 27 | 63 | False |
GoFish | 2536 | 2499 | False | 10 | 12 | False |
Imploding_Kitten | 1659 | 1316 | False | 37 | 39 | False |
MachiKoro | 2542 | 53 | 7 | 13 | 14 | 18 |
Phom | 2444 | 500 | False | 31 | 33 | False |
Poker | 1109 | 1155 | False | 71 | 59 | False |
Sheriff | 2510 | 3 | 362 | 28 | 30 | 33 |
Splendor | 2449 | 28 | 1 | 114 | 154 | 90 |
Splendor_v2 | 2621 | 15 | 1 | 48 | 51 | 50 |
Splendor_v3 | 2615 | 677 | 29 | 29 | 26 | 36 |
StoneAge | 2467 | 36 | 0 | 92 | 217 | 133 |
SushiGo | 2010 | 141 | 154 | 11 | 14 | 14 |
TicketToRide | 2041 | 0 | False | 60 | 913 | False |
TLMN | 2456 | 772 | 262 | 16 | 17 | 26 |
WelcomeToTheDungeon_v1 | 2530 | 833 | 796 | 3 | 12 | 15 |
WelcomeToTheDungeon_v2 | 2481 | 914 | 464 | 4 | 15 | 14 |
Please refer to Wiki for more details.